CHRONIC UNPREDICTABLE STRESS INDUCES RENAL DAMAGE IN RATS BY OXIDATIVE STRESS PROVOKED APOPTOSIS AND ALTERING THE FUNCTION OF Na/K-ATPase
نویسنده
چکیده
Background: Recently, some shocking epidemics of chronic kidney disease of undetermined origin have been reported. In this regard, numerous lines of evidence suggest that socioeconomic and environmental stressors have a key role, an effect that needs further confirmation. The present study was undertaken to explore the effect of Chronic Unpredictable Stress (CUS) on kidney function and structure in rats. Methods: It was a randomized control trial. Rats were divided into control and experimental groups (n=8 each). The experimental group (CUS group) consisted of rats which were exposed to a set of mild stressors for 21 days. After that, biochemical and molecular studies were conducted to measure kidney function tests, renal oxidative stress, inflammatory response, components of intrinsic apoptosis, as well as function of Na/K-ATPase. In addition, renal histopathological study was conducted. Results: Chronic Unpredictable Stress resulted in sever renal damage as indicated by enhanced serum urea and reduced creatinine clearance (Ccr), also evident by the severe glomerular and tubular damage and neutrophils infiltration. Concomitantly, CUS exaggerated oxidative stress and lipid peroxidation by inhibiting activities of endogenous antioxidant enzymes and activating renal inflammatory response. CUS stress resulted in inhibiting activities of renal Na/K-ATPase and induced Na retention. CUS activated intrinsic apoptotic pathway as evident by decrease renal levels of Bcl-2 and enhanced levels of caspase 3 and mRNA levels of p53 and Bax. Conclusion: Chronic Unpredictable Stress causes renal damage by exaggerating oxidative stress, inhibiting Na/K-ATPase pump activity and activation of inflammation and apoptosis.
منابع مشابه
Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats
Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery re...
متن کاملAzelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis
BACKGROUND Numerous evidences suggest that diabetic heart is characterized by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation, oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress could be therefore helpful in improving the cardiac function under diabe...
متن کاملHsp90β is involved in the development of high salt-diet-induced nephropathy via interaction with various signalling proteins.
A high-salt diet often leads to a local intrarenal increase in renal hypoxia and oxidative stress, which are responsible for an excess production of pathogenic substances. Here, Wistar Kyoto/spontaneous hypertensive (WKY/SHR) rats fed a high-salt diet developed severe proteinuria, resulting from pronounced renal inflammation, fibrosis and tubular epithelial cell apoptosis. All these were mainly...
متن کاملMethotrexate Promotes Platelet Apoptosis via JNK-Mediated Mitochondrial Damage: Alleviation by N-Acetylcysteine and N-Acetylcysteine Amide
Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 μM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm...
متن کاملOxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging.
Mitochondria do not only produce less ATP, but they also increase the production of reactive oxygen species (ROS) as by-products of aerobic metabolism in the aging tissues of the human and animals. It is now generally accepted that aging-associated respiratory function decline can result in enhanced production of ROS in mitochondria. Moreover, the activities of free radical-scavenging enzymes a...
متن کامل